Effect of cantilever nonlinearity in nanoscale tensile testing
نویسندگان
چکیده
Microcantilevers are widely used in micro-/nanoscale mechanics studies. The nonlinear response of a cantilever at large deflection is sometimes overlooked. A general study of cantilever beam nonlinearity under a variety of loading conditions was performed with analytical and finite element analyses. Analytical equations for the applied load and the cantilever deflection were obtained. The cantilever nonlinearity was found to increase with increasing cantilever deflection and/or angle of loading. Tensile tests were performed on templated carbon nanotubes TCNTs with a custom-made nanomanipulator inside a scanning electron microscope. Atomic force microscope AFM cantilevers were used to load the TCNTs and sense the force. During the tests the AFM cantilevers were loaded to relatively large deflections with nonvertical loads applied at the AFM tip. Based on the slope and the loading angle measurements, the breaking forces of the TCNTs were obtained through numerical integration of the analytical equations. A comparison was made between the load results obtained from linear and nonlinear analyses. The linear analysis was found to underestimate the applied load by up to 15%. © 2007 American Institute of Physics. DOI: 10.1063/1.2435064
منابع مشابه
Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study
It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...
متن کاملModal Testing and Finite Element Analysis of Crack Effects on Turbine Blades
The study of vibration response of a turbine blade helps to detect the crack presence in the blade which alters its dynamic characteristics. The change is characterized by changes in the modal parameters associated with natural frequencies. In this paper, study of vibration response is made for turbine blade in the presence of a crack like defect. Turbine blade is initially assumed as a cantile...
متن کاملNonlinear Vibration Analysis of a cantilever beam with nonlinear geometry
Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...
متن کاملتأثیر چگالی نابجاییها بر رفتار تغییر شکل فولاد بینیتی فوق مستحکم
Presence of nanoscale bainitic ferrites and high carbon retained austenites that are stable at ambient temperature within the microstructures of super strong bainitic steels makes it possible to achieve exceptional strengths and ductility properties in these groups of nanostructured steels. This article aims to study the effect of the dislocation density variations during tensile testing in amb...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کامل